vectorize_client.models.pipeline_summary

Vectorize API (Beta)

API for Vectorize services

The version of the OpenAPI document: 0.0.1 Generated by OpenAPI Generator (https://openapi-generator.tech)

Do not edit the class manually.

  1# coding: utf-8
  2
  3"""
  4    Vectorize API (Beta)
  5
  6    API for Vectorize services
  7
  8    The version of the OpenAPI document: 0.0.1
  9    Generated by OpenAPI Generator (https://openapi-generator.tech)
 10
 11    Do not edit the class manually.
 12"""  # noqa: E501
 13
 14
 15from __future__ import annotations
 16import pprint
 17import re  # noqa: F401
 18import json
 19
 20from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr
 21from typing import Any, ClassVar, Dict, List, Optional, Union
 22from vectorize_client.models.ai_platform import AIPlatform
 23from vectorize_client.models.destination_connector import DestinationConnector
 24from vectorize_client.models.source_connector import SourceConnector
 25from typing import Optional, Set
 26from typing_extensions import Self
 27
 28class PipelineSummary(BaseModel):
 29    """
 30    PipelineSummary
 31    """ # noqa: E501
 32    id: StrictStr
 33    name: StrictStr
 34    document_count: Union[StrictFloat, StrictInt] = Field(alias="documentCount")
 35    source_connector_auth_ids: List[StrictStr] = Field(alias="sourceConnectorAuthIds")
 36    destination_connector_auth_ids: List[StrictStr] = Field(alias="destinationConnectorAuthIds")
 37    ai_platform_auth_ids: List[StrictStr] = Field(alias="aiPlatformAuthIds")
 38    source_connector_types: List[StrictStr] = Field(alias="sourceConnectorTypes")
 39    destination_connector_types: List[StrictStr] = Field(alias="destinationConnectorTypes")
 40    ai_platform_types: List[StrictStr] = Field(alias="aiPlatformTypes")
 41    created_at: Optional[StrictStr] = Field(alias="createdAt")
 42    created_by: StrictStr = Field(alias="createdBy")
 43    status: Optional[StrictStr] = None
 44    config_doc: Optional[Dict[str, Any]] = Field(default=None, alias="configDoc")
 45    source_connectors: List[SourceConnector] = Field(alias="sourceConnectors")
 46    destination_connectors: List[DestinationConnector] = Field(alias="destinationConnectors")
 47    ai_platforms: List[AIPlatform] = Field(alias="aiPlatforms")
 48    __properties: ClassVar[List[str]] = ["id", "name", "documentCount", "sourceConnectorAuthIds", "destinationConnectorAuthIds", "aiPlatformAuthIds", "sourceConnectorTypes", "destinationConnectorTypes", "aiPlatformTypes", "createdAt", "createdBy", "status", "configDoc", "sourceConnectors", "destinationConnectors", "aiPlatforms"]
 49
 50    model_config = ConfigDict(
 51        populate_by_name=True,
 52        validate_assignment=True,
 53        protected_namespaces=(),
 54    )
 55
 56
 57    def to_str(self) -> str:
 58        """Returns the string representation of the model using alias"""
 59        return pprint.pformat(self.model_dump(by_alias=True))
 60
 61    def to_json(self) -> str:
 62        """Returns the JSON representation of the model using alias"""
 63        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
 64        return json.dumps(self.to_dict())
 65
 66    @classmethod
 67    def from_json(cls, json_str: str) -> Optional[Self]:
 68        """Create an instance of PipelineSummary from a JSON string"""
 69        return cls.from_dict(json.loads(json_str))
 70
 71    def to_dict(self) -> Dict[str, Any]:
 72        """Return the dictionary representation of the model using alias.
 73
 74        This has the following differences from calling pydantic's
 75        `self.model_dump(by_alias=True)`:
 76
 77        * `None` is only added to the output dict for nullable fields that
 78          were set at model initialization. Other fields with value `None`
 79          are ignored.
 80        """
 81        excluded_fields: Set[str] = set([
 82        ])
 83
 84        _dict = self.model_dump(
 85            by_alias=True,
 86            exclude=excluded_fields,
 87            exclude_none=True,
 88        )
 89        # override the default output from pydantic by calling `to_dict()` of each item in source_connectors (list)
 90        _items = []
 91        if self.source_connectors:
 92            for _item_source_connectors in self.source_connectors:
 93                if _item_source_connectors:
 94                    _items.append(_item_source_connectors.to_dict())
 95            _dict['sourceConnectors'] = _items
 96        # override the default output from pydantic by calling `to_dict()` of each item in destination_connectors (list)
 97        _items = []
 98        if self.destination_connectors:
 99            for _item_destination_connectors in self.destination_connectors:
100                if _item_destination_connectors:
101                    _items.append(_item_destination_connectors.to_dict())
102            _dict['destinationConnectors'] = _items
103        # override the default output from pydantic by calling `to_dict()` of each item in ai_platforms (list)
104        _items = []
105        if self.ai_platforms:
106            for _item_ai_platforms in self.ai_platforms:
107                if _item_ai_platforms:
108                    _items.append(_item_ai_platforms.to_dict())
109            _dict['aiPlatforms'] = _items
110        # set to None if created_at (nullable) is None
111        # and model_fields_set contains the field
112        if self.created_at is None and "created_at" in self.model_fields_set:
113            _dict['createdAt'] = None
114
115        return _dict
116
117    @classmethod
118    def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
119        """Create an instance of PipelineSummary from a dict"""
120        if obj is None:
121            return None
122
123        if not isinstance(obj, dict):
124            return cls.model_validate(obj)
125
126        _obj = cls.model_validate({
127            "id": obj.get("id"),
128            "name": obj.get("name"),
129            "documentCount": obj.get("documentCount"),
130            "sourceConnectorAuthIds": obj.get("sourceConnectorAuthIds"),
131            "destinationConnectorAuthIds": obj.get("destinationConnectorAuthIds"),
132            "aiPlatformAuthIds": obj.get("aiPlatformAuthIds"),
133            "sourceConnectorTypes": obj.get("sourceConnectorTypes"),
134            "destinationConnectorTypes": obj.get("destinationConnectorTypes"),
135            "aiPlatformTypes": obj.get("aiPlatformTypes"),
136            "createdAt": obj.get("createdAt"),
137            "createdBy": obj.get("createdBy"),
138            "status": obj.get("status"),
139            "configDoc": obj.get("configDoc"),
140            "sourceConnectors": [SourceConnector.from_dict(_item) for _item in obj["sourceConnectors"]] if obj.get("sourceConnectors") is not None else None,
141            "destinationConnectors": [DestinationConnector.from_dict(_item) for _item in obj["destinationConnectors"]] if obj.get("destinationConnectors") is not None else None,
142            "aiPlatforms": [AIPlatform.from_dict(_item) for _item in obj["aiPlatforms"]] if obj.get("aiPlatforms") is not None else None
143        })
144        return _obj
class PipelineSummary(pydantic.main.BaseModel):
 29class PipelineSummary(BaseModel):
 30    """
 31    PipelineSummary
 32    """ # noqa: E501
 33    id: StrictStr
 34    name: StrictStr
 35    document_count: Union[StrictFloat, StrictInt] = Field(alias="documentCount")
 36    source_connector_auth_ids: List[StrictStr] = Field(alias="sourceConnectorAuthIds")
 37    destination_connector_auth_ids: List[StrictStr] = Field(alias="destinationConnectorAuthIds")
 38    ai_platform_auth_ids: List[StrictStr] = Field(alias="aiPlatformAuthIds")
 39    source_connector_types: List[StrictStr] = Field(alias="sourceConnectorTypes")
 40    destination_connector_types: List[StrictStr] = Field(alias="destinationConnectorTypes")
 41    ai_platform_types: List[StrictStr] = Field(alias="aiPlatformTypes")
 42    created_at: Optional[StrictStr] = Field(alias="createdAt")
 43    created_by: StrictStr = Field(alias="createdBy")
 44    status: Optional[StrictStr] = None
 45    config_doc: Optional[Dict[str, Any]] = Field(default=None, alias="configDoc")
 46    source_connectors: List[SourceConnector] = Field(alias="sourceConnectors")
 47    destination_connectors: List[DestinationConnector] = Field(alias="destinationConnectors")
 48    ai_platforms: List[AIPlatform] = Field(alias="aiPlatforms")
 49    __properties: ClassVar[List[str]] = ["id", "name", "documentCount", "sourceConnectorAuthIds", "destinationConnectorAuthIds", "aiPlatformAuthIds", "sourceConnectorTypes", "destinationConnectorTypes", "aiPlatformTypes", "createdAt", "createdBy", "status", "configDoc", "sourceConnectors", "destinationConnectors", "aiPlatforms"]
 50
 51    model_config = ConfigDict(
 52        populate_by_name=True,
 53        validate_assignment=True,
 54        protected_namespaces=(),
 55    )
 56
 57
 58    def to_str(self) -> str:
 59        """Returns the string representation of the model using alias"""
 60        return pprint.pformat(self.model_dump(by_alias=True))
 61
 62    def to_json(self) -> str:
 63        """Returns the JSON representation of the model using alias"""
 64        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
 65        return json.dumps(self.to_dict())
 66
 67    @classmethod
 68    def from_json(cls, json_str: str) -> Optional[Self]:
 69        """Create an instance of PipelineSummary from a JSON string"""
 70        return cls.from_dict(json.loads(json_str))
 71
 72    def to_dict(self) -> Dict[str, Any]:
 73        """Return the dictionary representation of the model using alias.
 74
 75        This has the following differences from calling pydantic's
 76        `self.model_dump(by_alias=True)`:
 77
 78        * `None` is only added to the output dict for nullable fields that
 79          were set at model initialization. Other fields with value `None`
 80          are ignored.
 81        """
 82        excluded_fields: Set[str] = set([
 83        ])
 84
 85        _dict = self.model_dump(
 86            by_alias=True,
 87            exclude=excluded_fields,
 88            exclude_none=True,
 89        )
 90        # override the default output from pydantic by calling `to_dict()` of each item in source_connectors (list)
 91        _items = []
 92        if self.source_connectors:
 93            for _item_source_connectors in self.source_connectors:
 94                if _item_source_connectors:
 95                    _items.append(_item_source_connectors.to_dict())
 96            _dict['sourceConnectors'] = _items
 97        # override the default output from pydantic by calling `to_dict()` of each item in destination_connectors (list)
 98        _items = []
 99        if self.destination_connectors:
100            for _item_destination_connectors in self.destination_connectors:
101                if _item_destination_connectors:
102                    _items.append(_item_destination_connectors.to_dict())
103            _dict['destinationConnectors'] = _items
104        # override the default output from pydantic by calling `to_dict()` of each item in ai_platforms (list)
105        _items = []
106        if self.ai_platforms:
107            for _item_ai_platforms in self.ai_platforms:
108                if _item_ai_platforms:
109                    _items.append(_item_ai_platforms.to_dict())
110            _dict['aiPlatforms'] = _items
111        # set to None if created_at (nullable) is None
112        # and model_fields_set contains the field
113        if self.created_at is None and "created_at" in self.model_fields_set:
114            _dict['createdAt'] = None
115
116        return _dict
117
118    @classmethod
119    def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
120        """Create an instance of PipelineSummary from a dict"""
121        if obj is None:
122            return None
123
124        if not isinstance(obj, dict):
125            return cls.model_validate(obj)
126
127        _obj = cls.model_validate({
128            "id": obj.get("id"),
129            "name": obj.get("name"),
130            "documentCount": obj.get("documentCount"),
131            "sourceConnectorAuthIds": obj.get("sourceConnectorAuthIds"),
132            "destinationConnectorAuthIds": obj.get("destinationConnectorAuthIds"),
133            "aiPlatformAuthIds": obj.get("aiPlatformAuthIds"),
134            "sourceConnectorTypes": obj.get("sourceConnectorTypes"),
135            "destinationConnectorTypes": obj.get("destinationConnectorTypes"),
136            "aiPlatformTypes": obj.get("aiPlatformTypes"),
137            "createdAt": obj.get("createdAt"),
138            "createdBy": obj.get("createdBy"),
139            "status": obj.get("status"),
140            "configDoc": obj.get("configDoc"),
141            "sourceConnectors": [SourceConnector.from_dict(_item) for _item in obj["sourceConnectors"]] if obj.get("sourceConnectors") is not None else None,
142            "destinationConnectors": [DestinationConnector.from_dict(_item) for _item in obj["destinationConnectors"]] if obj.get("destinationConnectors") is not None else None,
143            "aiPlatforms": [AIPlatform.from_dict(_item) for _item in obj["aiPlatforms"]] if obj.get("aiPlatforms") is not None else None
144        })
145        return _obj

PipelineSummary

id: typing.Annotated[str, Strict(strict=True)]
name: typing.Annotated[str, Strict(strict=True)]
document_count: Union[Annotated[float, Strict(strict=True)], Annotated[int, Strict(strict=True)]]
source_connector_auth_ids: List[Annotated[str, Strict(strict=True)]]
destination_connector_auth_ids: List[Annotated[str, Strict(strict=True)]]
ai_platform_auth_ids: List[Annotated[str, Strict(strict=True)]]
source_connector_types: List[Annotated[str, Strict(strict=True)]]
destination_connector_types: List[Annotated[str, Strict(strict=True)]]
ai_platform_types: List[Annotated[str, Strict(strict=True)]]
created_at: Optional[Annotated[str, Strict(strict=True)]]
created_by: typing.Annotated[str, Strict(strict=True)]
status: Optional[Annotated[str, Strict(strict=True)]]
config_doc: Optional[Dict[str, Any]]
model_config = {'populate_by_name': True, 'validate_assignment': True, 'protected_namespaces': ()}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def to_str(self) -> str:
58    def to_str(self) -> str:
59        """Returns the string representation of the model using alias"""
60        return pprint.pformat(self.model_dump(by_alias=True))

Returns the string representation of the model using alias

def to_json(self) -> str:
62    def to_json(self) -> str:
63        """Returns the JSON representation of the model using alias"""
64        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
65        return json.dumps(self.to_dict())

Returns the JSON representation of the model using alias

@classmethod
def from_json(cls, json_str: str) -> Optional[Self]:
67    @classmethod
68    def from_json(cls, json_str: str) -> Optional[Self]:
69        """Create an instance of PipelineSummary from a JSON string"""
70        return cls.from_dict(json.loads(json_str))

Create an instance of PipelineSummary from a JSON string

def to_dict(self) -> Dict[str, Any]:
 72    def to_dict(self) -> Dict[str, Any]:
 73        """Return the dictionary representation of the model using alias.
 74
 75        This has the following differences from calling pydantic's
 76        `self.model_dump(by_alias=True)`:
 77
 78        * `None` is only added to the output dict for nullable fields that
 79          were set at model initialization. Other fields with value `None`
 80          are ignored.
 81        """
 82        excluded_fields: Set[str] = set([
 83        ])
 84
 85        _dict = self.model_dump(
 86            by_alias=True,
 87            exclude=excluded_fields,
 88            exclude_none=True,
 89        )
 90        # override the default output from pydantic by calling `to_dict()` of each item in source_connectors (list)
 91        _items = []
 92        if self.source_connectors:
 93            for _item_source_connectors in self.source_connectors:
 94                if _item_source_connectors:
 95                    _items.append(_item_source_connectors.to_dict())
 96            _dict['sourceConnectors'] = _items
 97        # override the default output from pydantic by calling `to_dict()` of each item in destination_connectors (list)
 98        _items = []
 99        if self.destination_connectors:
100            for _item_destination_connectors in self.destination_connectors:
101                if _item_destination_connectors:
102                    _items.append(_item_destination_connectors.to_dict())
103            _dict['destinationConnectors'] = _items
104        # override the default output from pydantic by calling `to_dict()` of each item in ai_platforms (list)
105        _items = []
106        if self.ai_platforms:
107            for _item_ai_platforms in self.ai_platforms:
108                if _item_ai_platforms:
109                    _items.append(_item_ai_platforms.to_dict())
110            _dict['aiPlatforms'] = _items
111        # set to None if created_at (nullable) is None
112        # and model_fields_set contains the field
113        if self.created_at is None and "created_at" in self.model_fields_set:
114            _dict['createdAt'] = None
115
116        return _dict

Return the dictionary representation of the model using alias.

This has the following differences from calling pydantic's self.model_dump(by_alias=True):

  • None is only added to the output dict for nullable fields that were set at model initialization. Other fields with value None are ignored.
@classmethod
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
118    @classmethod
119    def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
120        """Create an instance of PipelineSummary from a dict"""
121        if obj is None:
122            return None
123
124        if not isinstance(obj, dict):
125            return cls.model_validate(obj)
126
127        _obj = cls.model_validate({
128            "id": obj.get("id"),
129            "name": obj.get("name"),
130            "documentCount": obj.get("documentCount"),
131            "sourceConnectorAuthIds": obj.get("sourceConnectorAuthIds"),
132            "destinationConnectorAuthIds": obj.get("destinationConnectorAuthIds"),
133            "aiPlatformAuthIds": obj.get("aiPlatformAuthIds"),
134            "sourceConnectorTypes": obj.get("sourceConnectorTypes"),
135            "destinationConnectorTypes": obj.get("destinationConnectorTypes"),
136            "aiPlatformTypes": obj.get("aiPlatformTypes"),
137            "createdAt": obj.get("createdAt"),
138            "createdBy": obj.get("createdBy"),
139            "status": obj.get("status"),
140            "configDoc": obj.get("configDoc"),
141            "sourceConnectors": [SourceConnector.from_dict(_item) for _item in obj["sourceConnectors"]] if obj.get("sourceConnectors") is not None else None,
142            "destinationConnectors": [DestinationConnector.from_dict(_item) for _item in obj["destinationConnectors"]] if obj.get("destinationConnectors") is not None else None,
143            "aiPlatforms": [AIPlatform.from_dict(_item) for _item in obj["aiPlatforms"]] if obj.get("aiPlatforms") is not None else None
144        })
145        return _obj

Create an instance of PipelineSummary from a dict