vectorize_client.models.pipeline_metrics
Vectorize API (Beta)
API for Vectorize services
The version of the OpenAPI document: 0.0.1 Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
1# coding: utf-8 2 3""" 4 Vectorize API (Beta) 5 6 API for Vectorize services 7 8 The version of the OpenAPI document: 0.0.1 9 Generated by OpenAPI Generator (https://openapi-generator.tech) 10 11 Do not edit the class manually. 12""" # noqa: E501 13 14 15from __future__ import annotations 16import pprint 17import re # noqa: F401 18import json 19 20from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr 21from typing import Any, ClassVar, Dict, List, Optional, Union 22from typing import Optional, Set 23from typing_extensions import Self 24 25class PipelineMetrics(BaseModel): 26 """ 27 PipelineMetrics 28 """ # noqa: E501 29 timestamp: Optional[StrictStr] 30 new_objects: Union[StrictFloat, StrictInt] = Field(alias="newObjects") 31 changed_objects: Union[StrictFloat, StrictInt] = Field(alias="changedObjects") 32 deleted_objects: Union[StrictFloat, StrictInt] = Field(alias="deletedObjects") 33 __properties: ClassVar[List[str]] = ["timestamp", "newObjects", "changedObjects", "deletedObjects"] 34 35 model_config = ConfigDict( 36 populate_by_name=True, 37 validate_assignment=True, 38 protected_namespaces=(), 39 ) 40 41 42 def to_str(self) -> str: 43 """Returns the string representation of the model using alias""" 44 return pprint.pformat(self.model_dump(by_alias=True)) 45 46 def to_json(self) -> str: 47 """Returns the JSON representation of the model using alias""" 48 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 49 return json.dumps(self.to_dict()) 50 51 @classmethod 52 def from_json(cls, json_str: str) -> Optional[Self]: 53 """Create an instance of PipelineMetrics from a JSON string""" 54 return cls.from_dict(json.loads(json_str)) 55 56 def to_dict(self) -> Dict[str, Any]: 57 """Return the dictionary representation of the model using alias. 58 59 This has the following differences from calling pydantic's 60 `self.model_dump(by_alias=True)`: 61 62 * `None` is only added to the output dict for nullable fields that 63 were set at model initialization. Other fields with value `None` 64 are ignored. 65 """ 66 excluded_fields: Set[str] = set([ 67 ]) 68 69 _dict = self.model_dump( 70 by_alias=True, 71 exclude=excluded_fields, 72 exclude_none=True, 73 ) 74 # set to None if timestamp (nullable) is None 75 # and model_fields_set contains the field 76 if self.timestamp is None and "timestamp" in self.model_fields_set: 77 _dict['timestamp'] = None 78 79 return _dict 80 81 @classmethod 82 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 83 """Create an instance of PipelineMetrics from a dict""" 84 if obj is None: 85 return None 86 87 if not isinstance(obj, dict): 88 return cls.model_validate(obj) 89 90 _obj = cls.model_validate({ 91 "timestamp": obj.get("timestamp"), 92 "newObjects": obj.get("newObjects"), 93 "changedObjects": obj.get("changedObjects"), 94 "deletedObjects": obj.get("deletedObjects") 95 }) 96 return _obj
class
PipelineMetrics(pydantic.main.BaseModel):
26class PipelineMetrics(BaseModel): 27 """ 28 PipelineMetrics 29 """ # noqa: E501 30 timestamp: Optional[StrictStr] 31 new_objects: Union[StrictFloat, StrictInt] = Field(alias="newObjects") 32 changed_objects: Union[StrictFloat, StrictInt] = Field(alias="changedObjects") 33 deleted_objects: Union[StrictFloat, StrictInt] = Field(alias="deletedObjects") 34 __properties: ClassVar[List[str]] = ["timestamp", "newObjects", "changedObjects", "deletedObjects"] 35 36 model_config = ConfigDict( 37 populate_by_name=True, 38 validate_assignment=True, 39 protected_namespaces=(), 40 ) 41 42 43 def to_str(self) -> str: 44 """Returns the string representation of the model using alias""" 45 return pprint.pformat(self.model_dump(by_alias=True)) 46 47 def to_json(self) -> str: 48 """Returns the JSON representation of the model using alias""" 49 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 50 return json.dumps(self.to_dict()) 51 52 @classmethod 53 def from_json(cls, json_str: str) -> Optional[Self]: 54 """Create an instance of PipelineMetrics from a JSON string""" 55 return cls.from_dict(json.loads(json_str)) 56 57 def to_dict(self) -> Dict[str, Any]: 58 """Return the dictionary representation of the model using alias. 59 60 This has the following differences from calling pydantic's 61 `self.model_dump(by_alias=True)`: 62 63 * `None` is only added to the output dict for nullable fields that 64 were set at model initialization. Other fields with value `None` 65 are ignored. 66 """ 67 excluded_fields: Set[str] = set([ 68 ]) 69 70 _dict = self.model_dump( 71 by_alias=True, 72 exclude=excluded_fields, 73 exclude_none=True, 74 ) 75 # set to None if timestamp (nullable) is None 76 # and model_fields_set contains the field 77 if self.timestamp is None and "timestamp" in self.model_fields_set: 78 _dict['timestamp'] = None 79 80 return _dict 81 82 @classmethod 83 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 84 """Create an instance of PipelineMetrics from a dict""" 85 if obj is None: 86 return None 87 88 if not isinstance(obj, dict): 89 return cls.model_validate(obj) 90 91 _obj = cls.model_validate({ 92 "timestamp": obj.get("timestamp"), 93 "newObjects": obj.get("newObjects"), 94 "changedObjects": obj.get("changedObjects"), 95 "deletedObjects": obj.get("deletedObjects") 96 }) 97 return _obj
PipelineMetrics
model_config =
{'populate_by_name': True, 'validate_assignment': True, 'protected_namespaces': ()}
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
def
to_str(self) -> str:
43 def to_str(self) -> str: 44 """Returns the string representation of the model using alias""" 45 return pprint.pformat(self.model_dump(by_alias=True))
Returns the string representation of the model using alias
def
to_json(self) -> str:
47 def to_json(self) -> str: 48 """Returns the JSON representation of the model using alias""" 49 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 50 return json.dumps(self.to_dict())
Returns the JSON representation of the model using alias
@classmethod
def
from_json(cls, json_str: str) -> Optional[Self]:
52 @classmethod 53 def from_json(cls, json_str: str) -> Optional[Self]: 54 """Create an instance of PipelineMetrics from a JSON string""" 55 return cls.from_dict(json.loads(json_str))
Create an instance of PipelineMetrics from a JSON string
def
to_dict(self) -> Dict[str, Any]:
57 def to_dict(self) -> Dict[str, Any]: 58 """Return the dictionary representation of the model using alias. 59 60 This has the following differences from calling pydantic's 61 `self.model_dump(by_alias=True)`: 62 63 * `None` is only added to the output dict for nullable fields that 64 were set at model initialization. Other fields with value `None` 65 are ignored. 66 """ 67 excluded_fields: Set[str] = set([ 68 ]) 69 70 _dict = self.model_dump( 71 by_alias=True, 72 exclude=excluded_fields, 73 exclude_none=True, 74 ) 75 # set to None if timestamp (nullable) is None 76 # and model_fields_set contains the field 77 if self.timestamp is None and "timestamp" in self.model_fields_set: 78 _dict['timestamp'] = None 79 80 return _dict
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
self.model_dump(by_alias=True)
:
None
is only added to the output dict for nullable fields that were set at model initialization. Other fields with valueNone
are ignored.
@classmethod
def
from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
82 @classmethod 83 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 84 """Create an instance of PipelineMetrics from a dict""" 85 if obj is None: 86 return None 87 88 if not isinstance(obj, dict): 89 return cls.model_validate(obj) 90 91 _obj = cls.model_validate({ 92 "timestamp": obj.get("timestamp"), 93 "newObjects": obj.get("newObjects"), 94 "changedObjects": obj.get("changedObjects"), 95 "deletedObjects": obj.get("deletedObjects") 96 }) 97 return _obj
Create an instance of PipelineMetrics from a dict