vectorize_client.models.ai_platform_connector_input
Vectorize API
API for Vectorize services (Beta)
The version of the OpenAPI document: 0.1.2 Generated by OpenAPI Generator (https://openapi-generator.tech)
Do not edit the class manually.
1# coding: utf-8 2 3""" 4 Vectorize API 5 6 API for Vectorize services (Beta) 7 8 The version of the OpenAPI document: 0.1.2 9 Generated by OpenAPI Generator (https://openapi-generator.tech) 10 11 Do not edit the class manually. 12""" # noqa: E501 13 14 15from __future__ import annotations 16import pprint 17import re # noqa: F401 18import json 19 20from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator 21from typing import Any, ClassVar, Dict, List, Optional 22from typing import Optional, Set 23from typing_extensions import Self 24 25class AIPlatformConnectorInput(BaseModel): 26 """ 27 AI platform configuration 28 """ # noqa: E501 29 id: StrictStr = Field(description="Unique identifier for the AI platform") 30 type: StrictStr = Field(description="Type of AI platform") 31 config: Optional[Any] = Field(description="Configuration specific to the AI platform") 32 __properties: ClassVar[List[str]] = ["id", "type", "config"] 33 34 @field_validator('type') 35 def type_validate_enum(cls, value): 36 """Validates the enum""" 37 if value not in set(['BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE']): 38 raise ValueError("must be one of enum values ('BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE')") 39 return value 40 41 model_config = ConfigDict( 42 populate_by_name=True, 43 validate_assignment=True, 44 protected_namespaces=(), 45 ) 46 47 48 def to_str(self) -> str: 49 """Returns the string representation of the model using alias""" 50 return pprint.pformat(self.model_dump(by_alias=True)) 51 52 def to_json(self) -> str: 53 """Returns the JSON representation of the model using alias""" 54 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 55 return json.dumps(self.to_dict()) 56 57 @classmethod 58 def from_json(cls, json_str: str) -> Optional[Self]: 59 """Create an instance of AIPlatformConnectorInput from a JSON string""" 60 return cls.from_dict(json.loads(json_str)) 61 62 def to_dict(self) -> Dict[str, Any]: 63 """Return the dictionary representation of the model using alias. 64 65 This has the following differences from calling pydantic's 66 `self.model_dump(by_alias=True)`: 67 68 * `None` is only added to the output dict for nullable fields that 69 were set at model initialization. Other fields with value `None` 70 are ignored. 71 """ 72 excluded_fields: Set[str] = set([ 73 ]) 74 75 _dict = self.model_dump( 76 by_alias=True, 77 exclude=excluded_fields, 78 exclude_none=True, 79 ) 80 # set to None if config (nullable) is None 81 # and model_fields_set contains the field 82 if self.config is None and "config" in self.model_fields_set: 83 _dict['config'] = None 84 85 return _dict 86 87 @classmethod 88 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 89 """Create an instance of AIPlatformConnectorInput from a dict""" 90 if obj is None: 91 return None 92 93 if not isinstance(obj, dict): 94 return cls.model_validate(obj) 95 96 _obj = cls.model_validate({ 97 "id": obj.get("id"), 98 "type": obj.get("type"), 99 "config": obj.get("config") 100 }) 101 return _obj
class
AIPlatformConnectorInput(pydantic.main.BaseModel):
26class AIPlatformConnectorInput(BaseModel): 27 """ 28 AI platform configuration 29 """ # noqa: E501 30 id: StrictStr = Field(description="Unique identifier for the AI platform") 31 type: StrictStr = Field(description="Type of AI platform") 32 config: Optional[Any] = Field(description="Configuration specific to the AI platform") 33 __properties: ClassVar[List[str]] = ["id", "type", "config"] 34 35 @field_validator('type') 36 def type_validate_enum(cls, value): 37 """Validates the enum""" 38 if value not in set(['BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE']): 39 raise ValueError("must be one of enum values ('BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE')") 40 return value 41 42 model_config = ConfigDict( 43 populate_by_name=True, 44 validate_assignment=True, 45 protected_namespaces=(), 46 ) 47 48 49 def to_str(self) -> str: 50 """Returns the string representation of the model using alias""" 51 return pprint.pformat(self.model_dump(by_alias=True)) 52 53 def to_json(self) -> str: 54 """Returns the JSON representation of the model using alias""" 55 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 56 return json.dumps(self.to_dict()) 57 58 @classmethod 59 def from_json(cls, json_str: str) -> Optional[Self]: 60 """Create an instance of AIPlatformConnectorInput from a JSON string""" 61 return cls.from_dict(json.loads(json_str)) 62 63 def to_dict(self) -> Dict[str, Any]: 64 """Return the dictionary representation of the model using alias. 65 66 This has the following differences from calling pydantic's 67 `self.model_dump(by_alias=True)`: 68 69 * `None` is only added to the output dict for nullable fields that 70 were set at model initialization. Other fields with value `None` 71 are ignored. 72 """ 73 excluded_fields: Set[str] = set([ 74 ]) 75 76 _dict = self.model_dump( 77 by_alias=True, 78 exclude=excluded_fields, 79 exclude_none=True, 80 ) 81 # set to None if config (nullable) is None 82 # and model_fields_set contains the field 83 if self.config is None and "config" in self.model_fields_set: 84 _dict['config'] = None 85 86 return _dict 87 88 @classmethod 89 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 90 """Create an instance of AIPlatformConnectorInput from a dict""" 91 if obj is None: 92 return None 93 94 if not isinstance(obj, dict): 95 return cls.model_validate(obj) 96 97 _obj = cls.model_validate({ 98 "id": obj.get("id"), 99 "type": obj.get("type"), 100 "config": obj.get("config") 101 }) 102 return _obj
AI platform configuration
@field_validator('type')
def
type_validate_enum(cls, value):
35 @field_validator('type') 36 def type_validate_enum(cls, value): 37 """Validates the enum""" 38 if value not in set(['BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE']): 39 raise ValueError("must be one of enum values ('BEDROCK', 'VERTEX', 'OPENAI', 'VOYAGE')") 40 return value
Validates the enum
model_config =
{'populate_by_name': True, 'validate_assignment': True, 'protected_namespaces': (), 'validate_by_alias': True, 'validate_by_name': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
def
to_str(self) -> str:
49 def to_str(self) -> str: 50 """Returns the string representation of the model using alias""" 51 return pprint.pformat(self.model_dump(by_alias=True))
Returns the string representation of the model using alias
def
to_json(self) -> str:
53 def to_json(self) -> str: 54 """Returns the JSON representation of the model using alias""" 55 # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead 56 return json.dumps(self.to_dict())
Returns the JSON representation of the model using alias
@classmethod
def
from_json(cls, json_str: str) -> Optional[Self]:
58 @classmethod 59 def from_json(cls, json_str: str) -> Optional[Self]: 60 """Create an instance of AIPlatformConnectorInput from a JSON string""" 61 return cls.from_dict(json.loads(json_str))
Create an instance of AIPlatformConnectorInput from a JSON string
def
to_dict(self) -> Dict[str, Any]:
63 def to_dict(self) -> Dict[str, Any]: 64 """Return the dictionary representation of the model using alias. 65 66 This has the following differences from calling pydantic's 67 `self.model_dump(by_alias=True)`: 68 69 * `None` is only added to the output dict for nullable fields that 70 were set at model initialization. Other fields with value `None` 71 are ignored. 72 """ 73 excluded_fields: Set[str] = set([ 74 ]) 75 76 _dict = self.model_dump( 77 by_alias=True, 78 exclude=excluded_fields, 79 exclude_none=True, 80 ) 81 # set to None if config (nullable) is None 82 # and model_fields_set contains the field 83 if self.config is None and "config" in self.model_fields_set: 84 _dict['config'] = None 85 86 return _dict
Return the dictionary representation of the model using alias.
This has the following differences from calling pydantic's
self.model_dump(by_alias=True)
:
None
is only added to the output dict for nullable fields that were set at model initialization. Other fields with valueNone
are ignored.
@classmethod
def
from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
88 @classmethod 89 def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: 90 """Create an instance of AIPlatformConnectorInput from a dict""" 91 if obj is None: 92 return None 93 94 if not isinstance(obj, dict): 95 return cls.model_validate(obj) 96 97 _obj = cls.model_validate({ 98 "id": obj.get("id"), 99 "type": obj.get("type"), 100 "config": obj.get("config") 101 }) 102 return _obj
Create an instance of AIPlatformConnectorInput from a dict